next up previous contents
Next: Average stress (hydrostatic compressibility) Up: Material deformation and flow Previous: Hypo-Plasticity   Contents

Damage



In the presence of materi_damage $d$, the materi_stress follows:


\begin{displaymath}
\sigma_{ij}^{\rm damaged} = (1-d) \sigma_{ij}^{\rm undamaged}
\end{displaymath}



For the damage, the group_materi_damage_mazars model is available:

\begin{displaymath}
d = d_t ~ \alpha^{\beta} ~ + ~ d_c ~ (1 - \alpha )^{\beta}
\end{displaymath}

where

\begin{displaymath}
d_t = 1. - (1-a_t) ~ \frac{\epsilon^0}{\epsilon^{\rm eq}} -
a_t ~ e ^ { -b_t(\epsilon^{\rm eq} - {\epsilon^0}) }
\end{displaymath}

and

\begin{displaymath}
d_c = 1. - (1-a_c) ~ \frac{\epsilon^0}{\epsilon^{\rm eq}} -
a_c ~ e ^ { -b_t(\epsilon^{\rm eq} - {\epsilon^0}) }
\end{displaymath}

Here $\epsilon^{\rm eq}$ contains the positive principal strains. The parameter $\alpha $ is given by the ratio $\frac{\epsilon^{\rm eq}}{\epsilon}$, where $\epsilon$ contains the total strains (both negative and positive). The parameter $\epsilon^0$ is the strain threshold for damage; other material parameters are $\beta ~,~ a_t ~,~ b_t ~,~ a_c ~,~ b_c$. Typically for concrete:

\begin{displaymath}
1.e-4 < \epsilon^0 < 3.e-4 ~~;~~
\beta = 1. ~~ ; ~~
1 < ...
...b_t < 2000 ~~ ; ~~
0.7 < a_c < 1.2 ~~ ; ~~
e^4 < b_c < 5 e^4
\end{displaymath}

You can combine damage freely with plasticity models or other material behavior.



tochnog 2001-09-02