next up previous contents
Next: Damage Up: Material deformation and flow Previous: Elasto-Plasticity   Contents

Hypo-Plasticity

In hypoplasticity a direct relation is used between strain rates and stress rates. Specifically:


\begin{displaymath}
\dot{\sigma}_{ij} = L_{ijkl} \dot{\epsilon}_{ij} +
N_{ij} \sqrt{ \dot{\epsilon}_{kl} \dot{\epsilon}_{kl} }
\end{displaymath}

Here the part with $L_{ijkl}$ gives a linear relation between strain rates and stress rates and the part with $N_{ij}$ gives a nonlinear relation. The constitutive tensors $L_{ijkl}$ and $N_{ij}$ are functions of the effective stress tensor $\sigma_{ij}$ and void ratio $e$. The effective stress tensor $\sigma_{ij}$ follows from the total stress tensor $\sigma_{ij}$ minus any pore pressures (see groundflow). Rigid body rotations (objectivity) are treated elsewhere (see the section on memory).

Basic law, Wolffersdorff

The law proposed by WOLFFERSDORFF [11] is used.

\begin{eqnarray*}
& L_{ijkl} = f_s \displaystyle \frac{1}{\hat{\sigma}_{mn}\hat{...
...[ \hat{\sigma}^*_{mn}\hat{\sigma}^*_{mn} \right]^{3/2}} \quad .&
\end{eqnarray*}



For $\hat{\sigma}^*_{ij}=0$ is $F=1$.

The scalar factors $f_s$ and $f_d$ take into account the influence of mean pressure and density:

\begin{eqnarray*}
f_s &=&
\displaystyle \frac{h_s}{n}\,\left(\displaystyle \frac...
...t(\displaystyle \frac{e-e_d}{e_c-e_d}\;\right)^{\alpha}
\quad .
\end{eqnarray*}



Three characteristic void ratios - $e_i$ (during isotropic compression at the minimum density), $e_c$ (critical void ratio) and $e_d$ (maximum density) - decrease with mean stress:

\begin{displaymath}
\displaystyle \frac{e_i}{e_{i0}} = \frac{e_c}{e_{c0}} =
\fra...
...-
\left(-\frac{\sigma_{ij}\delta_{ij}}{h_s} \right)^n \right]
\end{displaymath}

The range of admissible void ratios is limited by $e_i$ and $e_d$. The model parameters can be found in Tab. 1. They correspond to Hochstetten sand from the vicinity of Karlsruhe, Germany [11].


Table 1: Basic hypoplastic parameters of Hochstetten sand.
$\varphi $ [$^{\circ}$] $h_s$ [MPa] $n$ $e_{c0}$ $e_{d0}$ $e_{i0}$ $\alpha $ $\beta $
33 1000 0.25 0.95 0.55 1.05 0.25 1.0


The basic law parameters should be specified in group_materi_plasti_hypo_wolffersdorff.

Cohesion

A simplistic appraoch to include cohesion is used here. Instead of feeding the real effective stress state $\sigma_{ij}$ into the hypoplastic law, an alternative effective stress state $\sigma_{ij}^c$ is used. Cohesion is modelled by subtracting in each of the normal stress components a value $c$ representing cohesion: $\sigma_{11}^c = \sigma_{11} - c$, $\sigma_{22}^c = \sigma_{22} - c$ and $\sigma_{33}^c = \sigma_{33} - c$. The shear stresses are not altered: $\sigma_{12}^c = \sigma_{12}$, etc.

The cohesion value should be specified in group_materi_plasti_hypo_cohesion.

Intergranular strains

In order to take into account the recent deformation history, an additional tensorial state variable $S_{ij}$1 is introduced.

Denoting the normalized magnitude of $S_{ij}$

\begin{displaymath}
\rho = \displaystyle \frac{\sqrt{S_{ij}S_{ij}}}{R}
\end{displaymath}

(R is a material parameter) and the direction of $S_{ij}$

\begin{displaymath}
\hat{S}_{ij} = \displaystyle \frac{S_{ij}}{\sqrt{S_{kl}S_{kl}}}
\end{displaymath}

( $\hat{S}_{ij}=0$ for $S_{ij}=0$), the evolution equation for the intergranular strain tensor reads:


\begin{displaymath}
\dot{S}_{ij} = \left\{ \begin{array}{lll}
( I_{ijkl}-\rho^{...
...ij}\dot{\epsilon}_{ij} \leq 0 \\
\end{array} \right. \quad ,
\end{displaymath}

where $\dot{S}_{ij}$ is the objective rate of intergranular strain. Rigid body rotations are treated elsewhere (see the section on memory). From the evolution equation (2.2.4) it follows that $\rho $ must remain between 0 and 1.

The general stress-strain relation is now written as

\begin{displaymath}
\dot{\sigma}_{ij} = M_{ijkl}\dot{\epsilon}_{kl} \quad .
\end{displaymath}

The fourth order tensor $M_{ijkl}$ represents the incremental stiffness and is calculated from the hypoplastic tensors $L_{ijkl}$ and $N_{ij}$ which may be modified by scalar multipliers $m_T$ and $m_R$, depending on $\rho $ and on the product $\hat{S}_{ij}\dot{\epsilon}_{ij}$:

\begin{eqnarray*}
M_{ijkl} &=& [ \rho^{\chi} m_T + (1-\rho^{\chi})m_R ] L_{ijkl}...
...\hat{S}_{ij}\dot{\epsilon}_{ij} \leq 0 \\
\end{array} \right.
\end{eqnarray*}



$\chi $ is an additional material parameter.

An example intergranular parameters can be found in Tab. 2.


Table 2: Example of Intergranular hypoplastic parameters.
$R$ $m_R$ $m_T$ $\beta _r$ $\chi $
$1\cdot 10^{-4}$ 5.0 2.0 0.50 6.0


The intergranular parameters should be specified in group_materi_plasti_hypo_intergranularstrain. Also you need to include materi_strain_intergranular in the initialisation part.

Pressure dependent initial void ratio

You can correct the initial void ratio $e_{0}$, as specified in the initial value for the history variable in the node_dof records, for the initial pressure to obtain a corrected initial void ratio $e$.

\begin{displaymath}
\frac{e}{e_{0}} = \exp \left[ -
\left(-\frac{\sigma_{ij}\delta_{ij}}{h_s} \right)^n \right]
\end{displaymath}

See the basic law description for the parameters $h_s$ and $n$. The $\sigma_{ij}$ denotes the effective stress tensor (total stresses minus any groundflow pressure). This pressure dependent initial void ratio correction can be activated by group_materi_plasti_hypo_pressuredependentvoidratio. After the initial void ratio has been established, the development of the void ratio is governed by volumetric compression or extension of the granular skeleton.


next up previous contents
Next: Damage Up: Material deformation and flow Previous: Elasto-Plasticity   Contents
tochnog 2001-09-02